Efficient Q-Learning over Visit Frequency Maps for Multi-agent Exploration of Unknown Environments OCTOBER 1 - 5, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems Xuyang Chen, Ashvin N. Iyer, Zixing Wang, and Ahmed H. Qureshi {chen4007, aniyer, wang5389, ahqureshi}@purdue.edu #### Introduction We introduce a multiagent exploration system that is sensitive to bandwidth usage and generalizes to different environments and swarm sizes. We also propose i-VFM, a novel state representation that uses only half the memory of past representations and encodes the same information. Our methods demonstrate **zero-shot** generalization to a swarm setting despite no explicit multi-agent training. # Methodology ## Experiments #### **Key Metrics** Agent N - Bandwidth measures the total transmission rate over all agents in megabytes - Path Efficiency (PE) measures the average new exploration per unit path - Repetitive Exploration Rate (RER) measures the ratio of observed area that overlaps a previously observed area 1x Size Arena 2x Size Arena Large Divider Arena #### EVALUATION PERFORMANCE IN DIVIDER AND 2x SIZED ARENAS | Trial | Policy | Agents | RER ↓ | PE ↑ | Steps ↓ | Overlap ↓ | Bandwidth ↓ | Coverage ↑ | Not Found ↓ | |----------|--------|--------|-------------------|-----------------|-----------------|---------------|---------------|-------------------|-------------| | Divider | VFM | One | 0.492 ± 0.517 | 5914 ± 2250 | 31.8 ± 34.3 | N/A | 4.3 ± 4.6 | 0.480 ± 0.308 | 6 / 200 | | | | Two | 0.477 ± 0.473 | 5601 ± 2353 | 32.3 ± 33.0 | 0.1 ± 0.1 | 4.4 ± 4.4 | 0.466 ± 0.316 | 0 / 200 | | | | Four | 0.502 ± 0.496 | 5574 ± 2626 | 35.5 ± 35.6 | 0.2 ± 0.1 | 4.8 ± 4.7 | 0.473 ± 0.319 | 0 / 200 | | | i-VFM | One | 0.584 ± 0.424 | 5524 ± 2305 | 33.6 ± 30.0 | N/A | 2.4 ± 2.1 | 0.460 ± 0.302 | 5 / 200 | | | | Two | 0.577 ± 0.529 | 5529 ± 2376 | 32.7 ± 30.8 | 0.1 ± 0.1 | 2.4 ± 2.2 | 0.443 ± 0.293 | 1 / 200 | | | | Four | 0.602 ± 0.651 | 5664 ± 2519 | 39.3 ± 41.8 | 0.2 ± 0.2 | 2.8 ± 3.0 | 0.472 ± 0.289 | 0 / 200 | | 2x Arena | VFM | One | 0.484 ± 0.471 | 6136 ± 1961 | 59.3 ± 62.9 | N/A | 8.1 ± 8.5 | 0.477 ± 0.315 | 1 / 200 | | | | Two | 0.507 ± 0.522 | 6206 ± 1909 | 62.4 ± 67.9 | 0.1 ± 0.1 | 8.5 ± 9.1 | 0.473 ± 0.319 | 1 / 200 | | | | Three | 0.422 ± 0.401 | 5995 ± 2223 | 54.4 ± 54.2 | 0.1 ± 0.1 | 7.4 ± 7.3 | 0.444 ± 0.297 | 1 / 200 | | | | Four | 0.419 ± 0.343 | 6230 ± 2078 | 54.8 ± 49.6 | 0.1 ± 0.1 | 7.5 ± 6.7 | 0.453 ± 0.306 | 1 / 200 | | | | Five | 0.375 ± 0.303 | 6867 ± 1804 | 49.9 ± 44.9 | 0.1 ± 0.1 | 6.8 ± 6.1 | 0.440 ± 0.290 | 3 / 200 | | 1744100 | | One | 0.575 ± 0.427 | 5957 ± 1696 | 66.5 ± 59.5 | N/A | 4.8 ± 4.3 | 0.485 ± 0.287 | 1 / 200 | | | | Two | 0.550 ± 0.409 | 5735 ± 2084 | 66.8 ± 58.6 | 0.1 ± 0.1 | 4.8 ± 4.2 | 0.477 ± 0.310 | 1 / 200 | | | i-VFM | Three | 0.494 ± 0.370 | 6072 ± 2062 | 61.8 ± 52.8 | 0.1 ± 0.1 | 4.5 ± 3.8 | 0.452 ± 0.293 | 0 / 200 | | | | Four | 0.491 ± 0.366 | 6083 ± 1992 | 61.9 ± 51.1 | 0.1 ± 0.1 | 4.5 ± 3.7 | 0.461 ± 0.290 | 3 / 200 | | | | Five | 0.420 ± 0.354 | 6421 ± 2188 | 56.1 ± 51.5 | 0.1 ± 0.1 | 4.1 ± 3.7 | 0.406 ± 0.292 | 3 / 200 | ### State Representation # Conclusion - . We present a multiagent exploration approach with a bandwidth usage that scales **linearly** with the explored area - 2. We show that our agents generalize to the multi-agent scenario despite being trained alone and having no central decision making mechanism. - 3. Our **i-VFM** state formulation performs comparably to the original VFM, while requiring half the bandwidth capacity.